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LOGISTIC REGRESSION WITH
RANDOM COEFFICIENTS

N. T. Longford
Educational Testing Service, Princeton, NJ

Abstract

An approximation to the likelihood for the generalized linear models with

random coefficients is derived and is the basis for an approximate Fisher

scoring algorithm. The method is illustrated on the logistic regression model

for one-way classification, but it has an extension to the class of generalized

linear models and to more complex data structures, such as nested two-

way classification. Both full and restricted maximum likelihood versions

of this algorithm are defined. The estimators of the regression parameters

coincide with the generalized estimating equations of Zeger and Liang (1986)

but an essentially different class of estimators for the covariance structure

parameters is obtained. A simulation study explores the properties of the

proposed estimators.

Some key words: covariance structure, Fisher scoring method, logistic

regression, maximum likelihood, random coefficients.
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1 Introduction

Clustered observations arise in a wide variety of applications, including agri-

cultural and animal breeding studies, econometrics, educational and medical

research, and survey analysis. For regression of such data random coefficient

models are usually considered, so as to take account of, or to make inference

about, the between-cluster variation.

There are several well-established and well-researched computational al-

gorithms for fitting random coefficient models with the usual normal assump-

tions; for a comprehensive review of earlier developments, see Harville (1977).

In this paper we concentrate on a logistic regression model for correlated bi-

nary outcomes, although the methods discussed have direct extensions for

binomial data with link functions other than logistic, and more generally, to

the entire class of generalized linear models.

Our development is similar to the generalized estimating equations (GEE)

of Liang and Zeger (1986) and Zeger and Liang (1986), although we estab-

lish a more direct connection between the generalized linear models with

random coefficients and the corresponding computational algorithms. For

example, our computational algorithm is based on an approximation to the

log-likelihood, and estimation procedures have their full and restricted (ap-

proximate) maximum likelihood versions. We propose a new estimator for

the covariance structure parameters which is a generalization of the maxi-

mum likelihood estimator in the normal case.
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Section 2 describes random coefficient models, and gives a brief summary

of computational algorithms for fitting such models for binary data. Sec-.

tion 3 discusses a maximum likelihood procedure using Gaussian quadrature,

and Section 4 presents a procedure based on an approximation to the log-

likelihood. Extensions of this method for more complex data structures, and

for other generalized linear models are indicated in Section 5. Formal deriva-

tion of the approximation to the log-likelihood for correlated observations

with a distribution from the exponential family is given in the Appendix.

Section 6 describes an adaptation of the exact and approximate procedures

for restricted maximum likelihood. In Section 7 we study the bias of the gen-

eralized least squares estimator for the regression parameters. We establish

a relationship between the bias of the ordinary least squares estimator in the

normal model with random coefficients and our approximation to the bias in

the logistic regression.

The methods are illustrated and compared on two examples (Section

8), and the properties of the associated estimators are explored in a sim-

ulation study (Section 9). We conclude that the generalized least squares

method provides a satisfactory estimator except when there is extremely

large between-cluster variation.

We focus on logistic regression and binary data, since they are frequently

considered in practice, and binary data represent an extreme form of depar-

ture from normality. Random coefficient methods for clustered observations

4
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provide a parsimonious summary for between-cluster differences.

2 Logistic regression models

We consider the logistic regression model

logit{P(yi; = 1 I Si)} = xiif3 o-b; (1)

for binary outcomes {yii} with a one-way layout structure, that is, i =

1, , n; and j = 1, . N2, and explanatory variables x. The number of

elementary-level units is N = n1 + + nm The regression parameters

and the variance parameter o-2 may be known or unknown, and o2 > 0. Each

regressor x may be defined either for individuals (elementary observations)

or for the clusters; in the latter case the index i is redundant, since such

a variable is constant within clusters. We assume that {6j} are a random

sample from the standard normal distribution, 6 1; N(0, 1), i.i.d. The model

(1) has a straightforward extension to models with more complex patterns

of between-cluster variation:

logit{P(yi; = 1 I 45;)} = x,j3 + zi;Elt5; , (2)

where X is a non-negative definite variance matrix (the possible non-unique-

ness of the square root in (2) is immaterial), and 15; N7(0,I). The variables
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z are usually a subset of the variables x, and both contain the intercept 1 =

(1, , 1)T. This conforms with similar conventions in analysis of covariance.

Extensions of the model (2) for data with a multi-way layout are straight-

forward. For example, for the nested two-way layout (clusters within areas)

it is natural to consider the model

1 1

logit {P(yiik = 1 I 5jk,1 Ok,2)} = Xi3ki3 Zijk,1E? öjk,1 Z1jk,2E3 ök,2 (3)

where i = 1, , n,j = 1, , ni2) and k = 1, . . . , N3 are the indices for the

elementary observation within a cluster, for the cluster within an area, and

for the area, respectively, and the components of the random vectors 5.ik,1

and 5k,2 are (univariate) independent N(0,1) random variables.

Further generalization of the models (1) (3) involves spanning them

over the class of generalized linear models (Nelder and Wedderburn, 1972,

and McCullagh and Nelder, 1990): Conditionally on the random vectors {45;}

the outcomes {yi;} have a specified distribution (e.g., Poisson, gamma, or t),

and

h {E(yi; 45;)} = + (4)

where h is a link function. This model is a generalization of (2); the gener-

alization of (3) is analogous. In addition to the design matrix for variation,
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given by the variables z and the matrix E, it suffices to specify only the link

function h and the dependence of the conditional variance var(yijibi) on the

conditional mean E(yi;

The model (4) with the identity link h(x) x and the normal distribu-

tion,

yij = xij,8 zijElbj fij, (5)

where ei; N(0, 4), represents a special case. We will refer to (5), with

= 1, as the (normal) parent model for (2), and similarly define the parent

models for (3) and (4).

There are several methods for maximum likelihood estimation in the

model (5). For earlier results see Hartley and Rao (1967), Patterson and

Thompson (1971), and for comprehensive reviews, Searle (1971) and Harville

(1977). Dempster, Laird and Tsutakawa (1981) describe an application of

the EM algorithm, Jennrich and Schluchter (1986) and Longford (1987) give

details of Newton-Raphson and Fisher scoring procedures, and Goldstein

(1986) describes a generalized least squares algorithm. The EM algorithm

tends to require a substantially higher number of iterations than the other

Methods, even when it is combined with routines designed te accelerate con-

vergence; see Thompson and Meyer ( 1",,6) and Lindstrom and Bates (1988)

for more detailed discussion. An iteracion of the EM algorithm and one of

7
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the Fisher scoring algorithm are of comparable complexity, since both require

computation of certain quadratic forms in the inverses of the unconditioDal

variance matrices var(yi) = crgI ZiEZT, where yi = (yij, , y,j)T and

Z; = , z)T. Lange and Laird (1989) describe some special cases for

which maximum likelihood solutions can be expressed in a closed form. An

important subset of these cases can be described as having balanced design

for the random part, i.e., Z; are identical across the clusters.

Relative simplicity of the algorithms for fitting the normal model (5) can

be attributed to the existence of closed form expressions for the conditional

moments of the random terms given the outcomes {NJ} (for the EM algo-

rithm), and of the log-likelihood and its partial derivatives (for Fisher scoring,

Newton-Raphson or generalized least squares methods).

For the logistic regression model (2) the joint likelihood for {yi;} involves

normal integrals;

1 = E log . P;(4 5;),(45;)d6; ( 4), (6)

where P3(53) = 11711{pi;(6 )}Y') 11 pi; (45;)}1-Y.) is the conditional likelihood

for cluster j given b 5, A;(45;) = logit_1(x0-Fzi.i.Eiki), and is the density

function of Is1,. (0, I). Direct maximization of (6) can be accomplished by using
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Gaussian quadrature, although with three or more dimensional integrals this

may be computationally very extensive.

The EM algorithm avoids evaluation of the integrals in (6), although the

conditional moments of the random effects 6; involve integrals, and so there

appears to be no gain in computational efficiency; on the contrary, owing

to slow convergence of the EM algorithm the latter integrals have to be

evaluated a larger number of times than the integrals in a direct maximization

routine. Laird and Ware (1982) and Stiratelli, Laird and Ware (1984) replace

the conditional expectations required for the EM algorithm by the conditional

modes, thus reducing the computational load somewhat. See also Anderson

and Aitkin (1985) for discussion of the EM algorithm in this context.

The intractable form of the log-likelihood (6) has until recently effectively

discouraged application of the normal-mixture model (2), and the beta-

binomial model (Williams, 1982), in which variation of the within-cluster

(i.e., conditional) probabilities is modelled by a beta distribution, has been

preferred. Simplification of the corresponding likelihood takes place since

the beta distribution is the conjugate for the binomial distribution. A dis-

tinct disadvantage of this approach for applications where between-cluster

variation is of substantive interest is that the scale of the mixing beta distri-

bution is difficult to relate to the more familiar logit or probit scales. Also,

the method is specific to binomial data, although other familiar distributions

have their conjugates. Rosner (1984) and Prentice (1986) discuss and extend
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the results of Williams (1982). Breslow (1984) adapts the idea for clustered

Poisson data.

Bonney (1987) and Connolly and Liang (1988) define a class of logistic

regression models for non-independent observations by the conditional dis-

tributions of the individual outcomes given the rest of the outcomes in the

cluster (or a subset thereof). Although this development is most natural for

times series or longitudinal data it is equally suitable for situations with a

symmetric pattern of dependence.

The generalized estimating equations approach (GEE) of Zeger and Liang

(1986) and Liang and Zeger (1986) is based on a generalized least squares

type estimator for the regression parameters

= (XTV-1X)-1XTV-1y, (7)

where X is the design matrix, consisting of the rows xii, in lexicographic

order, y is the corresponding vector of outcomes, and V is a variance ma-

trix, a function of certain parameters. Zeger and Liang (1986) propose naive

estimators for these parameters; Prentice (1988) discusses a class of more

efficient estimators. Thus model fitting by the GEE approach involves iter-

ations of (7), with the parameters in V replaced by their current estimates,

and an updating of the parameters involved in V.

In contrast to the other methods reviewed above, GEE approach does not
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arise from a model that describes how the data are generated. This renders

assessment of the assumed model (model checking) difficult, especially for

small samples. Nevertheless the GEE approach has two important virtues:

computational simplicity, and that it caters for a general class of distribu-

tional assumptions as well as link functions. A similar framework, based on

quasilikelihood, is proposed by McCullagh and Nelder (1990).

For logistic regression Zeger and Liang (1986) propose a general covari-

ance structure

V = {R(p)}1Vo{R(p)}i, (8)

where Vo is the diagonal matrix, Vo = diag{pi;(1pi;)}, pi; =

and R(p) is a block-diagonal correlation matrix, with blocks Ri(p) corre-

sponding to the clustefs. The simplest non-trivial choice for R(p) is the

equicorrelation structure,

Rj(P) = (1 p)In; pJ (9)

where In and Jn are the identity matrix and the matrix of ones, of size n x n,

respectively. Zeger and Liang (1986) and Zhao and Prentice (1990) discuss

estimation procedures for p. Note that R(p) in (9) is non-negative definite

for p > 11 max(n; 1); negative correlations can be realized when there is
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an upper limit for the cluster sizes.

Alternative parametrizations for R include sequential dependence, e.g.,

tridiagonal Ri or tridiagonal RV., applicable for longitudinal analysis; see

Zeger, Liang, and Albert (1988), Zeger and Qadish (1988) and Zhao and

Prentice (1990) for examples.

An exact maximum likelihood procedure for the model (1) has been pro-

posed by Anderson and Aitkin (1985), and in a more general context (two-

way nested layout) by Im and Gianola (1988). In Section 3 we describe an

alternative to these methods based on the Newton-Raphson method. All

these algorithms rely on numerical integration.

3 Exact maximum likelihood

In principle, evaluation of the integrals in (6), as well as of their partial

derivatives, can be accomplished by Gaussian quadrature. This is feasible

in practice for models with simple structure of between-cluster variation,

that is, with a variance matrix E in (2) of low dimension, and then direct

maximization of (6) is relatively straightforward. For the model (1) we have

and

z Eexp(I;) P;(5)s;(8)(1,(6)(18, (10)

12
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al +.E exp( L0 .13(6)si1(8)64)(45)c15, (11)

where 13 is the jth summand defined in (6),

sa(b) =

and .s31 is the first component of sa (corresponding to the intercept 1). The

second-order partial derivatives of (6) are

021 E "al. al.
T

aj3T al@ as

+ E exp(I;) 1+: P;(6) {XTN V i(b)X; si(b)sT (6)1 (1.(6)(16,

021 ai.
=

al.E'Taa 5,3 ai3

and

02!
(au)2

(12)

i-o<>

+ E exp( j. Ps(S) {XINV;(s)zi si(6)4" j(5)} CS)db,

(04\2

I. 061")

13

A. #

(13)



+ E exp( -1j) f+.:: P2(6) {zIWi(S)z; st(S)} 52 (1)(8)(16,

(14)

where W (5) is the diagonal matrix of the conditional variances, given b; = 5,

pi; (40{1 pii(8)} = 1, ... ,ni, X; is formed by vertical stacking of

the row vectors xi; , and z; is the rt; x 1 vector of ones. The expressions (6)

and (10) (14) can be approximated by Gaussian quadrature and used in

a Newton-Raphson maximization procedure. The generalized least squares

solution, which corresponds to a = 0, is a suitable starting solution. An

arbitrary positive number can be used as the starting solution for a (or (72).

In the examples discussed in Section 8 we set initially /7 = 1, usually much

larger than the maximum likelihood solution; a more judicious choice for

the starting 6- would save not more than one Newton-Raphson iteration. For

several model fits for these datasets, and for the number of quadrature points

in the range 3 11, the maximization procedure required 3 5 GLS iterations

and 3 - 6 further iterations based on (10) (14).

It appears that 5 quadrature points are sufficient for data with moderate

number of clusters (say, up to 100), but for larger datasets a higher number

of quadrature points is required, although 9 points are sufficient even for data

with 2,000 clusters. Empirical evidence for these observations is provided by

the analysis of two datasets (Section 8) as well as by the simulation study

reported in Section 9.
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4 An approximate Fisher scoring algorithm

We denote the linear predictor Oij = xii0 and for brevity write pi; =

= pia(l w+i = Ei wij, eij (yiJ pij)/Wij, ej = (e1j, en, jr

W3 = (tplj, wn,j)T Note that ei; is the generalized residuals familiar

from the generalized least squares method.

The conditional log-likelihood for the cluster j has the Taylor expansion

around 8 = 0

log{Pi (6) } log{Pj(0)} w (a.5)2w.f;

k! (96)k_1 is=0

If all but the first three terms of this expansion are ignored, we obtain

N2
1 E1og{P;(0)} log(2ircr2)

2

+c° ( 6 452giE ejTw; c1) 8+ log exp
-°0

1
0.2 (eiwi)

E log { /3; (0)} 7, E log gi +
gj

(15)

(16)

where gj = 1+ cr2w+).

An approximate maximum likelihood estimator for the parameters 0

15



and a2 can be defined as the maximizer of (16) in the parameter space

(co, +oo)P x [0, +co). If we ignore the dependence of w; on /3 we have

and

al xj\r-le,ap

A2 /

asas T

(17)

(18)

where X and e are formed by stacking of {X;} and {ei} , respectively,

and V is the block-diagonal matrix with blocks V; = W71 + cr2J,, and

W; = W;(0). See Longford (1988) for derivation of the approximations (17)

and (18). The approximations imply the generalized least squares estimator

(7), although with a parametric form for V different from (9): Whereas in the

GEE approach, (9), equal correlations of the Pearson residuals are assumed,

our development leads to equal covariances of the generalized residuals. We

will refer to the estimator based on the latter as the AML (approximate max-

imum likelihood) estimator. Note that some improvement in the formulae

(17) and (18) can be achieved by exact differentiation of (16).

If the linear predictor 0 = xi3 is constant then the GEE and AML es-

timators of ( = th) coincide because the corresponding variance matrices

V are identical. In this case the parameters p and o2 are related by the

identity p = 021(w + 0.2), where w is the common value of all wii. In general,

the two parametrizations are more different the larger the variation of the

16



linear predictors Oij. For independent observations (p = 0, or a- = 0) both

approaches result in the generalized least squares (GLS) estimator. Thus we

can expect the GEE and AML estimators to perform well for small depar-

tures from independence of the observations. However, for high correlations

(covariances) the variance matrices V used for obtaining these two estimators

have unrealistic properties. For GEE, contrary to expectations, the modelled

variances of the observations (the diagonal of V) do not depend on p; the

within-cluster correlation does not inflate the variances of the observations.

For AML these variances are inflated by (crtvii)2, and for large a some of

the variances wi;(1 cr2wi;) may be greater than :14-, the maximum variance

of binary data. Thus caution should be exercised when interpreting fitted

variances for the observations based on the estimated correlation ji or the

variance 6-2.

The first-order partial derivative of (16) with respect to cr2 is

fT 2
81 1 _ wj8,722 g 2

3 gj

and the second-order partial derivative is

(921

E(eTw .)2 W+i00.2)2 2 6.4 ? 3 3 3
gl gi

Using the approximate identity var(eTwi) = w+igi we obtain

17
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and by similar operations it can be shown that Eo2l/0,0(30-2n 0 .

5 Extensions

(21)

In this Section we consider extensions for the AML approach parallel to the

extensions of the basic GEE model (8) (9).

First, the development (15) (16) for the general model (2) yields the

approximation

I log(27r) log det(Gi) + 2 E log{Pj(0)}

+ E e.,T-wjz; (22)

where N = n1-1- ... nN2 is the sample size, Gj = I -I- ZTVViZiX, and so it

corresponds to the choice V; = Wil -1-Zi.EZT in (17) and (18). Times series

patterns of dependence can be implemented only by specifying the form of

Vi, in complete analogy with the GEE approach.

5.1 Nested two-way layout

Suppose the individual observations, indexed ijk, are in clusters jk, and the

clusters are contained in areas k = 1,2, ... , N3. We will use the notation of

18



the previous sections, with the additional subscript k denoting the area. For

the model (3) let

and

Viktl = Zik,1, El Z1

Vk,2 = diag(Vik,l) Zk,2X242. (23)

Note that V = diag(Vk,2) would be the natural choice for the variance matrix

in (17) and (18). Appendix contains a derivation of the following approxi-

mation for the density for the nested two-way layout in the context of the

generalized linear models,

1
1

2
N log(27r) E E log det G3k,1 E log det Gk,2

k j

+ E eiTykizk,2 E2Gk-,1 + E E log{Pj(0)}, (24)
k j

where G,k,1 = + Z:Tk1Wik,IZA,IZ1 and Gic,2 = + ZZ2VklZk,2 X2) and ek

is the vector of generalized residuals for the observations in the area k. Note

that the inverse of the matrix Vjk,1 can be expressed in terms of the matrix

Gjk,1

Differentiation of (24) with respect to 0, while ignoring the dependence

of Vka, G3k,1 and Gk,2 on 0, leads to the estimator given by (17) and (18),

19



with the blocks of V given by (23). For a general parameter 6 involved in

one of the variance matrices, Zi or X2, we have

and

81 tr °V) I e
aVk 2

86 2 We- .,7; k k
V-1 eT

Ic

,2 oe k,2 k (25)

- E
8

(v-i 2-1-Tv-1 . (26)
\ 861 6, 2 \ (961 562

Proof of (25) and (26) is contained in the Appendix.

5.2 Generalized linear models

The Taylor expansion (15) can be applied in the much more general context

of (conditional) generalized linear models defined by (4), or its extension for

two-way layout. Details are given in the Appendix.

The normal model (5) with the identity link is a special case of these

conditional GLM models. An exact maximum likelihood solution for this

model is obtained by the iterative procedure defined by the equations (7),

(17) (19) and (21) with V; cr2I Zi.EZT. An important implication

of this is that a maximum likelihood algorithm for fitting the normal model

(5) can be adapted for the conditional GLM model (4) by replacing all the

crossproducts required for evaluation of the normal log-likelihood (and of its

partial derivatives) by its weighted versions, with the weights defined by the

20



applied link and (conditional) variance functions.

In the normal case the additional scale parameter o2 = var(e) can be

estimated as the stationary point of the equation

N (27)

It is advantageous to use the reparametrization 17 = a-2E, in which case

(27) is obtained by solving the normal equation for o-2. Then (3-2 =

where U = I + diag(ZJEZT) does not depend on cr2.

6 Restricted maximum likelihood

In the normal case the maximum likelihood estimator for the variance matrix

E is known to be biased, and an unbiased estimator is obtained by maximiz-

ing the likelihood corresponding to the N p error contrasts orthogonal to

the regressor space; see Patterson and Thompson (1971), or Harville (1977),

for detailed discussion. Harville (1974) has derived an explicit form for this

restricted log-likelihood (RML). The full and restricted log-likelihoods differ

by a constant and the term

1R = - log {det (xTV-1X)}.
2

(28)

The formulae for the Fisher scoring algorithm can be straightforwardly ad-
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justed for RML.

Stiratelli, Laird and Ware (1984) define the restricted log-likelihood for

logistic mixed regression with random coefficients by integrating out the re-

gression parameters 0 using a fiat prior. RML is most important for models

with relatively many regression parameters, and maximization of the likeli-

hood may be computationally demanding exactly in such cases.

We propose to approximate the restricted log-likelihood by the adjust-

ment (28), with the variance matrix V, given by (17) or (23), as appro-

priate, to the respective log-likelihood (16) or (24), or indeed to the exact

log-likelihood. This proposal has no theoretical foundation, it is based only

on analogy with the normal case. The simulations reported in Section 9 show

that the maximum likelihood estimator for the between-cluster variance in

logistic regression is downward biased, and that the restricted maximum like-

lihood adjustment reduces its bias (in the simulated situation).

7 Bias of the GLS estimator

An important practical issue is related to the performance of the GLS es-

tima,tor of the regression parameters in presence of positive between-cluster

variation. In the context of the normal models this issue has been discussed

by Holt and Scott (1982). The principal question is that of the bias of the

estimators for the standard error. Since the approximation for the asymp-

totic information matrix for 0 in logistic regression has a form similar to its
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exact counterpart for the normal regression, a discussion similar to that of

Holt and Scott (1982) can be conducted. For illustration we assume a simple

logistic regression model

logit{P(yi; = 11(5i)} = + 0x,-; + (29)

and we associate this model with its parent normal model

yi; = c + a6; ci; (30)

with var(c,,) = 1, and common design matrix X, regression parameters (a, 0)

and variance a2 = var(bi) for the two models. We denote VN = var(e)) in

(29) and VB the generalized variance matrix for (30). Thus the information

about (Cr, #) in (29) is approximated by (FB =) XTVB-IX and is equal to

=) )(Tv in (30). We have

g = XT WX - a2 E x,rmr,z, z;rmr,x,/g
3

Vjg

xTW,z,
9.7

ZTWiXj
E--0 g)

XTWX E
(Xl W )2

9

(31)

where xi (x) is the second column of X; (X), z; is a vector of length ni, and
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= 1+ cr2w+3. In the corresponding formula for the normal model (30) the

role of w+; and W is taken by the number of observations in the cluster j

(n;), and the nj x ni identity matrix, respectively.

If we additionally assume that the average variance, (c .) wiInj, is

constant within the clusters, then the information matrix FN is equal to the

information FE for the dataset in which the design matrices X; are replicated

1/c times in each cluster. Since c < we see that clustering has a much

reduced impact on the bias of the estimators of the standard errors. This

explains the apparent redundancy of the maximum likelihood methods over

the GLS method in the interviewer variability example, and of the sample

data analysis in the analysis of death rates in U.S. hospitals in Section 8.

The comparison of the logistic regression models with their parent models

carries over to more complex patterns of variation; for instance, for the model

1ogit{P(yi; = 11a3, b;)} = a; + bixii (32)

with (aj,b;) No, x) the approximate information matrix for is equal

to Ej G;1XTXj, where G; = I + XTWX; E.

Information about the between-cluster variance (72 in the model (1) and

its parent normal model permit a similar discussion. The information in the

former is approximated by E; wL/(1 + cr2w+;)2, and in the normal case it

is equal to Ei rq/(1 c2ni)2. This implies that the binary models contain
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relatively little information about a2, unless there are many clusters with

large totals w, and/or a2 is small. In the sense of the comparison above the

information about a2 in (29) is comparable with the parent normal model (30)

with n; /w.f.; times fewer observations in each cluster. Note that n/(1 a2n)

is an increasing function of n, but its derivative is smaller than 1. Thus

larger clusters contain more information about a2, but the increase is slower

than when the same number of observations is added to the sample in new

clusters.

8 Examples

8.1 Interviewer variability in an attitudinal survey

We illustrate the methods using a dataset kindly provided by Professor Shure

from the Department of Psychology, UCLA. The data were collected in a

survey of public awareness of political issues. The outcome variable is the re-

spondent's perception of the government's role in his/her life, originally coded

on the scale 1 5. For purposes of illustration we consider the dichotomous

variable generated from this rnultinomial variable by recoding the values 1

and 2 into 0 and the values 3 5 into 1. There is one explanatory variable for

the subjects (their gender, RSEX, coded 0 for females and 1 for males), and

three variables defined for interviewers: their gender, ISEX, political opinion,

IPOL, on the scale 1 4, from liberal to conservative, and (self-rated) con-

cern for others, ICON, on the scale 1 3. Although the latter two variables
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involve ordered categories, we will regard them throughout as quantitative

variables, so as to reduce the number of estimated parameters and to sim-

plify the discussion. The data contain records of 1008 respondents, each of

them having been interviewed by one of the 40 interviewers. The workloads

of the interviewers (numbers of respondents for each interviewer) vary be-

tween 12 and 85, although 32 interviewers have workloads smaller than 30

(see Table 1). Preliminary analysis as well as prior information imply that

the between-cluster variance is likely to be very small, and possibly equal

to zero, especially if differences in the interviewer-attributes are taken into

account. This is largely confirmed by our analysis, although the size of the

sampling variance of the estimate of cr2 provides only weak evidence against

large values of cr2 .

Results of model fits using the generalized least squares (GLS), the ap-

proximate maximum likelihood (AML), the restricted approximate maximum

likelihood (RAML), the generalized estimating equations (GEE), the max-

imum likelihood using 3-, 5- and 9-point Gaussian quadrature (ML3, ML5

and ML9), and the restricted maximum likelihood using 9-point quadrature

(REML) are displayed in Table 2.

The estimates and their estimated standard errors obtained by using 5-,

7- and 9-point quadrature differ by less than 10 (results for the 7-point

quadrature are omitted), and for practical purposes it would suffice to use

3-point quadrature. The AML estimates and the standard errors for the
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regression parameters are very close to the corresponding values for ML. The

largest discrepancies, though still trivial, occur for GLS and for RAML. The

discrepancies of the former are to be expected, in analogy with the (parent)

normal case.

The estimate of the variance (72 in AML closely reproduces its ML coun-

terpart, although the RAML and REML obtain substantially inflated es-

timates of the variance. The inflation factors are much higher than what

could be expected by considering the number of regression parameters and

the number of interviewers. The estimated standard error for the estimate

of the standard deviation a is greater than its AML counterpart but the es-

timated standard error for the estimates of the variance a2 is much smaller.

This 'paradox' is due to the strong dependence of the information about a

and a2 on a2.

Figure 1 contains the plot of the profiles of the various approximations

to the log-likelihood as functions of a, and Figure 2 the same plots on the

variance scale. It is preferable to derive naive confidence intervals based on

standard errors for the variance, although in a wider range of values of a2

the dependence on the standard deviation a appears to be much closer to a

quadratic curve. Figures 1 and 2 also demonstrate that all the approxima-

tions to the log-likelihood, except ML3, are good for a2 in a wide range of

realistic values.

The dependence of the restricted maximum likelihood deviances on the
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variance closely resembles that for the full maximum likelihood. The cor-

rection term (28) varies insubstantially as a function of a2 . The difference

between AML (ML) and RAML (REML) estimates of a is much smaller

when fewer explanatory variables are used.

The GEE estimate of the 'working' correlation cannot be directly com-

pared with the estimates of a or cr2, because it refers to a different scale.

Note, however, that all the regression estimates are rather small, and so

there is little variation in the fitted values x/3.

An approximate likelihood ratio test for the hypothesis of zero between-

cluster variance can be carried out by comparing the values of -21og-likelihood

(deviance); or their approximations, for the models with estimated a' and

the corresponding generalized linear model (assuming cr2 = 0). In our case

the difference of the deviances is approximately 0.10 for all methods, except

RAML and REML, where it is equal to 0.66. Note that the R,AML and

REML deviances for the submodel with a' = 0 is adjusted by the term (24);

the RAML deviances cannot be compared with any deviances that refer to

full maximum likelihood.

The iterations were terminated when the norm of the correction for the

estimated parameters was smaller than 10 and the change in the value

of the approximation to the log-likelihood (6) was smaller than 10. Each

method required three or four iterations, although all the methods except

GLS use the GLS model fit as the starting solution. The times given in
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Table 2 are the physical times (in seconds) that elapsed while fitting the

model by the respective methods. The times for all the methods apart from

GLS include the time taken to fit the GLS as the starting solution. Thus an

iteration of AML, RAML, or GEE took 1.7 2.5 seconds. The time required

for fitting ML increases with the number of quadrature points, about 10.5

seconds per point. All the model fits were carried out on an IBM/PC using

the GAUSS software.

There appear to be consistent differences among male and female in-

terviewees (the corresponding t-ratios are about 1.8), but the interviewer's

attributes are not significant. Note however, that the estimated regression

parameters, if taken at face value, are quite large: For a given respondent

the logit of his/her response could differ by as much as 0.5 for a pair of inter-

viewers with different sexes and extreme values of the attribute ICON. Even

though there are 40 interviewers, the substantive conclusion of the analysis

is that the data contain little information about interviewer variability (and

even less information about the various pairwise comparisons of the inter-

viewers). The estimates of the corresponding standard deviation a are about

0.1, but even the value of 0.25 is quite feasible. Differences associated with

such variation can be easily translated to the probability scale, and are in

the present context substantial.
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8.2 Death rates of Medicare patients at U.S. hospitals

The Health Care Finance Administration (HCFA) publishes annual reports

giving for each acute care hospital in the U.S.A. the number of patients

treated during the year and the number of deaths among those over 65 years

insured by the Medicare system. The data are given for each of 14 diag-

nostic categories. The within-hospital death rates are compared with the

national death rate for each diagnostic category and statistically significant

comparisons (at a nominal 5% level) pointed out.

Clearly such a system of monitoring the quality of health care has a num-

ber of problems, including the choice of the outcome (died within 30 days of

admittance, or survived), but one addressable issue is that of the risk asso-

ciated with a patient's (hypothetical) selection of the hospital. Adjustment

for the health condition of the patient at the time of admittance appears

to be essential, but the-relevant data, which consists of various measures of

severity of the condition, is very costly to obtain because it requires time

consuming abstracting from medical records by qualified staff.

As part of a large study assessing the quality of care under the Medicare

Prospective Payment System (Kahn et al., 1990), a stratified probability

sample of 297 hospitals was selected from the list of all U.S. acute care

general hospitals active during the years 1981/82 and 1985/86. A set of

standardized variables measuring patient's severity of condition at admission

was extracted from a small number of randomly selected patient records (3 4
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patients from each hospital and each time period per disease). An assessment

of the quality of the medical care given to each patient was also performed.

These assessments were coded in a quantitative variable called PROCESS.

The age of each patient was also considered as a predictor variable;

For the complete national data for fiscal year 1986, analyzed by Jencks

et al. (1988) using an alternative method, we consider the logistic random-

effects analysis of variance model

logit{P(ytj = 1 I 61)} (33)

The estimates and standard errors for the parameters p and (72 for four diag-

nostic conditions with high mortality rates are given in Table 3. We see that

the data contain abundant information about between-hospital variation;

each estimated variance is highly significant (using the t- or the likelihood ra-

tio test). The estimated variances are substantial; for example, a pneumonia

patient has an estimated probability of survival 1/11 exp(-1.57 0.28)1 =

0.864 in a hospital with 5; = 1, and 1/{1 exp(-1.57 + 0.28)} = 0.784 in

a hospital with 6.; = +1.

Unlike for the previous example, the estimate of the standard error of

is affected by the between-cluster variance quite substantially; the ratios of

the standard errors for ML and for GLS are in the range 1.3 1.5. This is a

consequence of the data containing a large number of large clusters (several
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hospitals admit annually more than 1,000 patients for a specific condition).

Adjustment for the explanatory variables would be expected to reduce the

amount of between-hospital variation. We discuss here only the analysis for

pneumonia. The death rate, not adjusted for severity, of the patients selected

into the 1981/82 sample was 0.148 (1216 patients with mortality data), and

the estimate of the variance cr2 corresponding to the random effects ANOVA

model (33) is 0.0960 (standard error 0.1610). In contrast, the death rate

for the 1985/86 sample is 0.171 (1320 patients with mortality data), but the

fitted variance is negative, equal to 0.0030 (standard error 0.1240).

Results for some of the logistic regressions for the survey data are dis-

played in Tables 4 (1981/82) and 5 (1985/86). Patient's severity is repre-

sented by the 11 variables used in Jencks et al. (1988), of which the vari-

able APACHE II (Knaus, Draper and Wagner, 1985), is the most impor-

tant. There are five stratifying variables (including dummy variables that

categorize hospitals according to size), and the variable PROCESS is also

considered. The variables APACHE II and PROCESS have been linearly

rescaled to have mean zero and standard deviation 1. The ML estimates

for the between-hospital variance are negative (zero) for most models for the

1985/86 data, whereas for 1981/82 they are positive, with exception of the

model with adjustment for all the variables. Adjustment for severity appears

to decrease the estimate of the between-cluster variance, while adjustment

for process has the opposite effect, though to a much lesser degree. However,
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the estimated standard errors associated with these estimates of a2 axe so

large that we have little confidence that severity adjustment does reduce the

differences among the hospitals. The data with all the severity measures

have too little information about between-cluster variation. The negative

estimated variances are clearly unrealistic; in fact they could not be realized

in hospitals with more than about 100 patients.

It would seem that larger samples are required to obtain a meaningful

estimate for (72 The approximate information for o2 given by (21) can be

used to decide about the survey design that would improve or optimize the

information about a2. Suppose, for simplicity, that the same number of pa-

tients, n, is to be sampled from each selected hospital, and a total of N

patients will be selected to the survey. The approximate information for o-2

is equal to 12-Nnw2/(1+nwo-2), where w = p(1 p) is the common conditional

variance (given Si = 0), and for fixed N, w and (72 it has a unique maximum

for n* = 1/wo2. For pneumonia we have w 0.15 and almost certainly

a2 < 0.3, and so it is very likely that n* > 20. This suggests that a design

with fewer hospitals and more patients from each selected hospital would be

much more informative about o-2. However, design with independent obser-

vations (one patient per hospital) is most informative about the regression

parameters. A suitable tradeoff is likely to be closer to the design with fewer

sampled hospitals.
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9 S imulat ions

The methods discussed in Sections 3 and 4 were compared in a simulation

study. Data were generated according to the simple logistic regression model

with a random intercept:

logitIP(yia = 1 (Si)} = a -I- fi'xi; (34)

with 40 clusters (j), four of them containing 21, 22, ... , 30 observations each.

The regression parameters were set to a = 0 and ,8 = 1. The values of the

regressor x were drawn from the uniform distributions on (-1,1) for one set

of 100 simulations, and on (1, 3) for another set of 100 simulations. The

(regression) designs are referred to as U(-1,1) and U(1,3). The values of the

standard deviation a were set to 0, 0.1, , 1 in each a set of simulations.

The purpose of the simulations was to compare the estimators of the pa-

rameters a, and a (cr2), and the standard errors of these estimators, to

assess the importance of taking account of between-cluster variation in esti-

mating a and fl, as well as to compare the computational complexity of the

methods. Of interest is the agreement of the AML, RAML and GEE esti-

mators with their exact ML counterparts and the accuracy of the estimated

standard errors for predicting the observed mean squared errors.

We summarize results separately for each estimated quantity (parameter

or standard error):
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1. Slope f 3: The biases of the GLS, AML, RAML, ML9 and REML9 esti-

mators of the slope 0 are plotted in Figures 3 and 4 for the resr tive designs

U(-1,1) and U(1,3). The AML, RAML and GLS estimators of the slope have

nearly identical means, and their biases are essentially a decreasing function

of the variance a2. The GEE estimator is essentially indistinguishable from

the AML estimator, and is therefore omitted from the plots. The ML9 and

REML9 estimators are also nearly identical, but their biases are much smaller

than those of the GLS, AML and RAML estimators. However, the difference

in the biases is substantial only for a > 0.4 for U(-1,1), and o- > 0.7 for

U(1,3). It is rather counterintuitive that the bias in much smaller in the

U(1,3) design which contains much less information about the slope.

2. Variance a2 : The means of the AML, RAML, ML9 and REML9

estimators of the variance a2 are plotted in Figures 5 and 6 for the respective

designs U(-1,1) and U(1,3). The bias of the REML9 estimator is negligible

for up to a = 0.9. The ML9 and REML9 have comparable biases, and the

bias of the AML estimator is the largest. However, the bias of the latter is still

ignorable for a2 < 0.4 in both designs. Again the bias of all four estimators is

much smaller for the U(1,3) design which contains less information about 72

Note that in ML and REML methods the standard deviations are estimated,

and so the corresponding estimator of the variance is nonnegative. As a

result these estimators of the variance have a positive bias for small values

of o-2.
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3. Mean squared error of the estimators of the slope: Figures 7 and 8

contain the plots of the mean squared errors for the five studied estimators.

The GLS estimator is only slightly less efficient than its AML and RAML

counterparts for the U(-1,1) design, and its efficiency breaks down only for

> 0.5 in the U(1,3) design. The ML9 and REML9 estimators of 0 are sub-

stantially more efficient for large values of a in U(-1,1) design (the efficiency

reaches about 135% for a = 1), but they are less efficient than the AML and

RAML estimators for the U(1,3) design throughout the range of a. Note that

for the U(-1,1) dt -ign the mean squared error is an increasing function of a

for a > 0.3, but in the U(1,3) no such trend can be observed.

4. Standard errors for the estimators of the variance a2 : AML and

RAML methods estimate the variance a2, and in our implementation nega-

tive estimates of the variance were allowed. These methods can be adapted

for estimation of the standard deviation a in the obvious way, and the corre-

sponding standard error can be calculated by application of the chain rule.

However, the sign of the value of the estimate is not determined, and therefore

the definition of the corresponding mean squared error is ambiguous. The

ML9 and REML9 methods estimate the standard deviation a, from which an

estimator of a2 can be defined, but it does not allow negative values of the

variance. The sampling distribution of the estimators of a would be expected

to be a censored normal. The histogram of the 48 positive estimates of a

by AML method in U(-1,1) design (Figure 9) provides strong evidence to
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the contrary. Substantially smaller proportion of the estimates of a are close

to 0 than would be expected. Generally, the distributions of the variance

estimators appear to resemble the normal distribution more closely than the

estimators of standard deviation, although for large values of the variance

the difference is not substantial. We therefore compare the ML9 and REML9

estimators for the standard errors with their AML and RAML counterparts

only for o > 0.5, where no negative estimates of o-2 have occurred. Figures

10 and 11 contain plots of the means of the four estimators of standard er-

rors. The correction for bias appears to increase the standard errors, though

only marginally. The approximate methods, AML and RAML, yield more

efficient estimators than their exact counterparts, ML9 and REML9, though

the difference is insubstantial.

We have replicated a small sample of the simulations of the ML9 estima-

tor using 7- and 11- point Gaussian quadrature. No corresponding sets of

estimated quantities (parameters and standard errors) differed by more than

The value of the deviance (-2 log-likelihood) was obtained for each method.

It provides information about the quality and power of the (approximate)

likelihood ratio tests for the hypothesis of independence (o-2 = 0). The sam-

pling distributions for the coiresponding deviance differences for all four

methods closely resemble the x? distribution. Figure 12 contains the cor-

responding qq-plot for the AML method, U(-1,1) design.
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The naive t-ratio test for zero variance closely agrees with the likelihood

ratio criterion. The power of these tests is very low; the observed power

of the likelihood ratio test for the null hypothesis of cr2 = 0 when the true

variance is, say, 0.09, is only 44% for the U(-1,1) design, and 19% for the

U(1,3) design (at the 5% level of significante). Clearly, with such designs

there is little scope for modelling more complex covariance structures than

the equicovariance one.

10 Discussion

The approximation to the log-likelihood and its partial derivatives for logistic

regression with random coefficients provides an alternative derivation of the

GEE approach of Liang and Zeger (1986). The approximation highlights

the problematic nature of both methods of estimation when the estimated

between-cluster variation is large.

The loss of information about the regression parameters attributable to

clustering in logistic regression is much smaller than in the normal regression,

and, in addition to the cluster sizes it depends on the distribution of the

predicted variances wi3.

The AML approach discussed in this paper is a model- and estimation-

framework parallel with the GEE approach of Liang and Zeger (1986). In

addition, the AML approach is supported with an approximation to the

log-likelihood, and for random regression coefficients, with a model descrip-
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tion which enables data simulation, and in principle, detailed model diag-

nostic procedures, such as those described by Pregibon (1981). Also the

parametrization implied by these models is a natural one, and is easy to

transform from the linear scale to the scale of the outcomes, such as to the

probabilities in logistic regression.
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Appendix
Approximation for the likelihood of the ran-
dom effects model with non-normally distri-
buted outcomes

We consider the density of a distribution in the exponential class

f (y , 0,r) = exp[a(r) {y0 b(0)} + c(y; 7)1, (1)

in which the parameter 0 is a function of the linear predictor xf3. We will

use the following expansion:

yO(x13 + zö) b{0(x0 + zö)}

',-.--, yO(x0) b{9(0)} + z45[0"(x13) b' {9(x)(3)}0' (0)]

+ .1- (z6)90" (x0) b" {0(x0)}{0(x0)}2 b'{0(x0)}0"(0)]

. Ao(x/3) + zöll1(x0) (z45)2A2(xi3). (2)

We assume that a(r) > 0 and A2(0) > 0 for all r and 0. Note that these

functions are related to the variance of the distribution (1).
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Suppose each observation i = 1, , n of a cluster has the density f(yi3Oi,T)

with 0, = 8(x1/3 zi6), where xi and zi are given vectors and 6 -- Nr(0, E1)

for a positive definite matrix E. The observations are assumed conditionally

independent given 6. The joint density for the cluster can be approximated,

using the expansion (2), as

{(27r)rdet E1}-1
1f + zi45),T} exp (--
2

bT E16) db.

RT

{(27)rdet E1} -11-11.1 f{yi, e(x0), r}

f ...f exp [a(T) {A1Z6 5T(ZTA2Z + E-1)6}} (16

fr=1 f { yi, 0(xii3), r}Ra(7)}ndet exp{-1-a(r)eTe
2 2

(3)

where e = A1AV, V1 = a-1(r)(A2 + A2ZE1ZTA2), G = L + ZTA2ZE1,

A1 = {A.1(x10), A1(xn0)}, A2 = diag{A2(x30), , A2(x7d3)}, and Z

zDT. Note that

= a(r)(A'2-1 ZE1G-1ZT).
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Next suppose there are clusters j = 1, , N2 with ni observations each, with

vectors of outcomes y; and design matrices Xa = (xTi, ,x)T and Za, and

conditionally on y E 113 each cluster has the (approximated) joint density

(3) with 0(x.i0) replaced by 61(xijO uicy), and let U; be the ni x s matrix

containing the rows ui,. Suppose these clusters are conditionally independent

and that -y Ns(0, .E2), where E2 is a positive definite matrix. The joint

density for these N = E)3Y...21 ri; observations can be approximated, using (2),

as

f

F{Y , e(cs),T} ka(r)}N 11711 det Gil

{(2r)sdet .E2}-1 exp {1.-a(r)E; eTei Ei eTve;}

f exp [a(r) {Ei AliUct IJIA2 Ei-1) d,7

F{Y, e(X), [fa(r)11'r1721detG; detHr 2 exp 4a(r)dTd IdTVVcil

(4)
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where

P{Y., e(X),r} = 1111 flyi3,0(xij0),71,

H = I+ Ej UTI3TV-i-jB2Uj.E2, d = ej,Gi, A13, A23, and

VI; are defined as the corresponding vectors or matrices e, G, A1, A2, and V1

for cluster j, B1

and

(ATI, AT2, .14/ = diag(AT1, A2-r2, ATN2)T,

V2 = diag(V13) a-1(r)B2UE2UTBT,

where U , uTN2 yr.

Extensions to further layers of nesting are analogous; in the appropriately

altered notation we have the following approximation for the joint density of

a cluster of order k (containing Nk_.1 clusters of order k 1, each of these

containing clusters of order k 2, and so on):

k Nk 2

F{Y, epo), 7} [a(TAN det Ghi] exp (-1eTe leTV/71e) , (5)
2 2h=1 i=1

where the (generalized variance) matrix Vk is defined recursively:

Vk = diag(Vk-li) A2ZkZkZik-A2,
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and Gk = ZkjV1ZEk. Note that the product of the determinants

in (5) is equal to detV.

An approximate maximum likelihood estimator for all the unknown param-

eters can be defined as the maximizer of (5). The first- and second-order

partial derivatives of the logarithm of (5) with respect to the regression pa-

rameters j3 have the approximations (17) and (18) (the dependence of the

weights on the linear predictor has to be ignored). This implies the general-

ized least squares estimator. The first-order partial derivative with respect

to a covariance structure parameter 0 is

81 ,av
= {-tr (V- --) TAT_I aNT

ao e V-1e
ae

(6)

and the expectation of the second-order partial derivative has the approxi-

mation (setting E (eeT) V)

821 ) = tr
( ay av

8002 2 ae, 802
(7)

The approximations (3) (7) can be extended for singular matrices El, E2)

..., since the approximate joint density (5) can be analytically extended

to the boundary of the parameter space for these variance matrices. Also,
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extension for non-constant scale a(r) is trivial.

Longford (1988) gives an approximation to the joint density for clustered

observations, similar to the derivation presented here, with the conditional

density (1) replaced by the extended quasilikelihood function of Nelder and

Pregibon (1987).
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Table 1: The workload of the interviewers; Interviewer Variability Example

12 12 13 14 15 15 16 17 17 17
18 18 18 19 19 20 20 20 21 21
22 23 23 23 23 24 24 24 24 26
26 28 30 31 36 42 45 47 60 85



Table 2. Regression model fits to the interviewer data.

The methods are: generalized least squares (GLS), approximate maximum

likelihood (AML), restricted approximate maximum likelihood (RAML), gen-

eralized estimating equations (GEE), exact maximum likelihood using 3-, 5-

and 9- point quadrature (ML3, ML5, and ML9, respectively), and restricted

exact maximum likelihood (REML), using 9-point quadrature. The estimates

are given in the columns 2 7 and the corresponding standard erors under-

neath in parentheses. The deviances are the values of -2 log-likelihood.

Legend:

The RAML deviance for the GLS model fit

2 Estimate of the working correlation (GEE)



6

Table 2: Regression model fits to the interviewer data.

PARAMETER ESTIMATES MODEL FITTING INFORMATION

METHOD Intercept RSEX IPOL ICON ISEX a2 Iterations Deviance Comp. Time

GU' -.5965
(.2937)

-.2705
(.1515)

-.0708
(.0707)

-.1793
'(.1370)

-.1142
(.1671)

4 1071.152 5.27

A M -.5906
(.3041)

-.2686
(.1518)

-.0736
(.0729)

-.1823
(.1418)

-.1128
(.1740)

.0136
(.0486)

.1166
(.2085)

3 1071.055 10.33

RAML -.5817
(.2937)

-.2656
(.1515)

-.0779
(.0707)

-.1875
(.1370)

-.1101
(.1671)

.0391
(.0524)

.1976
(.1327)

4 1092.459
1093.1141

13.07

GEE -.5900
(.3380)

-.2680
(.1478)

-.0735
(.0743)

-.1827
(.1467)

-.1132
(.2051)

.03242 3 12.85

M113 -.5934
(.3050)

-.2692
(.1519)

-.0739
(.0520)

-.1825
(.1423)

-.1126
(.1741)

.1162
(.1993)

4 1071.056 59.59

ML5 -.5931
(.3052)

-.2692
(.1519)

-.0739
(.0521)

-.1826
(.1424)

-.1128
(.1741)

.1173
(.2017)

4 1071.055 80.68

M L9 -.5931
(.3052)

-.2692
(.1519)

-.0739
(.0521)

-.1826
(.1424)

-.1128
(.1741)

.1173
(.2016)

4 1071.055 122.75

-.5841
(.2980)

.2661
(.1508)

-.0774
(.0717)

.1889
(.1386)

-.1130
(.1652)

.1953
(.1360)

4 1092.373
1093.024

84.22



Table 3: Analysis of the complete national data for the four most frequent conditions.
Standard errors are given in parentheses ( ) and the ML9 estimates in braces [ 1. The standard errors
for the ML9 estimates are omitted (to conserve space); they differ from their counterparts by less than
0.0002 for the mean logit, and less than 0.0006 for the variance (72.

DEATH RATES AND THEIR BETWEEN-HOSPITAL VARIATION
COMPLETE NATIONAL DATA, FISCAL 1986

Conditions
Hospitals Patients

Died
Death
rt (%)

GLM AML
[ML]

a2 Lk lh.

ratio

Pneumonia 5628 415,179 -1.4645 -1.5057 0.2830 1689.03
77,961 18.78 [-1.4811] [0.2846] [1710.12]

(0.0040) (0.0059) (0.0061)

Heart 5541 465,229 -1.7106 -1.7184 0.2109 559.45
Failure 71,223 15.31 [4.7037] [0.2071] [553.63]

(0.0041) (0.0054) (0.0068)

Stroke 5310 298,306 -1.3664 -0.13549 0.2598 813.81
60,617 20.32 [4.3370] [0.2518] [805.81)

(0.0046) (0.0063) (0.0075)

Heart 5285 278,114 -1.0717 -1.0595 0.2085 507.21

Attack 70,942 25.51 [-1.0406] [0.2033] [499.11]
(0.0044) (0.0057) (0.0071)



Table 4: Logistic regression for death rates (pneumonia), with adjustment for severity, stratification and
PROCESS (as indicated in the rows), year 1981/82.
HOSP denotes the random effects due to the hospitals, STRAT the stratifying variables, PROC the
process variable, and SEVER the measures of severity (they include APACHE as a variable). The
standard errors for 13.2 and given in parentheses ( ), and the deviance corresponding to cr2 = 0 (the GLS
deviance) in brackets [ ].

PARAMETER ESTIMATES (ST. ERRORS)

Adjustment
,or APACHE PROCESS

Deviance
[GLS deviance]

Regression
parameters

HOSP 0.0960 1019.27 1

(0.1610) [1019.66]

HOSP, STRAT 0.0711 1014.63 6

(0.1579) [1014.85]

HOSP, PROC -0.1424 0.1099 1016.31 2

(0.0840) (0.1622) [1016.82]

HOSP, SEVER 0.9556 0.0036 692.82 12

(0.1074) (0.2123) [692.82]

HOSP, SEVER 0.9883 -0.1540 0.0092 690.50 13

PROC (0.1100) (0.1013) (0.2130) [690.51]

HOSP, SEVER 0.9841 -0.1626 -0.0093 687.57 18
PROC, STIZ AT ((1.1107) (0.1030) (0.2104) [687.57]



Table 5: Logistic regression for death rates (pneumonia), with adjustment for severity, stratification and
PROCESS, 1985/86.
The same notation is used as in Table 4.

PARAMETER ESTIMATES (ST. ERRORS)

Adjustment
for APACHE PROCESS 6.2

Deviance
[GLS deviance]

Regression
parameters

HOSP -0.0030 1208.60 1

(0.1240) [1208.60]

HOSP, STRAT -0.0289 1204.81 6

(0.1207) [1204.86]

HOSP, PROC -0.2721 0.0172 1195.78 2

(0.0762) (0.1263) [1195.80]

HOSP, SEVER 0.8032 -0.1053 915.31 12

(0.0937) (0.1461) [915.77]

IIOSP, SEVER 0.8459 -0.1994 -0.1172 910.29 13

PROC (0.0960) (0.0884) (0.1456) [910.84]

HOSP, SEVER 0.8521 -0.1876 -0.1542 906.61 18

PROC, STRAT (0.0963) (0.0892) (0.1498) [907.53]



Approximations to the deviance. interviewer variability example

0.1

0

0

0.0 0.2 0.4 0.6

STANDARD DEVIATION

0.8 1.0

Figure 1: Profiles of the approximations to the 2 log-likelihood for the Interviewer
variability data as a function of the standard deviation a.
The methods of approximation are: --: AML, approximate log-likelihood (16);

ML3; -- ML5; ML7; ML9 (MLk stands for the k-point
Gaussian quadrature approximation to the 2 log-likelihood).



Approximations to the deviance. Interviewer variability example

0.0 0.2 0.4 0.6

VARIANCE

0.8 1.0

Figure 2: Profiles of the approximations to the -2 log-likelihood for the Interviewer
variability data as a function of the variance cr2.
The notation and methods of approximation are the same as in Figure 1.



Bias of the estimators of the slope, U(-1,1)

0.0 0.2 0.4 0.6

STANDARD DEVIATION

0.8 1 0

Figure 3: Bias of the estimators of the slope as a function of the standard deviation

a in the simulated data, li(-1,1) design.
The estimators are. GLS (generalized least squares); AML (ap-

proximate maximum likelihood); ---- RAML (approximate restricted maxi-
mum likelihood); -- ML9 (maximum likelihood using 9-point quadrature);

REML9 (re-stricted maximum likelihood using 9-point quadrature. The

scale of the vertical axis is in -.001 (most of the recorded biases are negative).



Bias of the estimators of the slope, U(1,3)

0.0 0.2 0.4 0.6

STANDARD DEVIATION

0.8 1.0

Figure 4: Bias of the estimators of the slope as a function of the standard deviation
a in the simulated data, U(1,3) design.
The estimators are GLS, AML, RAML, ML9 and REML9, as in Figure 3.



Estimators of the variance, U(-1,1) design

STANDARD DEVIATION

Figure 5: Comparison of the estimators of the variance cr2; ii(-1,1) design.

The estimators are: AML (approximate maximum likelihood);
RAML (approximate restricted maximum likelihood); ML9 (max-

imum likelihood using 9-point quadrature); REML9 (restricted maximum
likelihood using 9-point quadrature); denotes the exact value of the variance.



Estimators of the variance, U(1,3) design

0.0 0.2 0.4 0.6

STANDARD DEVIATION

0.8

Figure 6: Comparison of the estirnators of the variance o-2; U(1,3) design.
The notation is the same as in Figure 5.
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0

Observed MSE for the estimators of the slope, U(-1,1)

0.0 0.2 0.4 0.6

STANDARD DEVIATION

0.8 1.0

Figure 7: Mean squared error of the estimators of the slope as a function of the
standard deviation a in the simulated data, U(-1,1) design.
The estimators are: - GLS; AML; RAML; ML9;

REML9. The units on the vertical axis are 10-3.



Observed MSE for the estimators of the slope, U(1,3)
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0.0 0.2 0.4 0.6 0.8 1.0

STANDARD DEVIATION

Figure 8: Mean squared error of the estimators of the slope as a function of the
standard deviation a in the simulated data, U(1,3) design.
The notation is the same as in Figure 7.
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Positive AML estimates, var = 0, U(-1,1) design

t
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Estimates of standard deviation
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Figure 9: Distribution of the positive estimates of a for the parameter value a = 0
in simulated data, U(-1,1) design.
In the 100 simulations 48 positive estimates of the variance were obtained.
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Estimated standard errors for the variance, U(-1,1)

..
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STANDARD DEVIATION

Figure 10: Estimated standard errors for the variance estimators for the simulated
data, U(-1,1) design.
The methods of estimation are: AML; RAML; ML9;

REML9. The units on the vertical axis are 1072.
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Estimated standard errors for the variance, U(1,3)

0.0 0.2 0.4 0.6 0.8 1.0

STANDARD DEVIATION

Figure 11: Estimated standard errors for the variance estimators for the simulated
data, U(1,3) design.
The notation is the same as in Figure 10.



Approximate likelihood ratio statistic, U(-171) design
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Figure 12: The qq-plot of the empirical null-distribution of the likelihood ratio
statistic, against the x? distribution, for the hypothesis of within-cluster indepen-
dence (cr2 = 0); the simulated data, U(-1,1) design.


